
Let’s
Create

© Copyright IBM Corporation 2024

Jesse Gorzinski
IBM Business Architect
@OSSJesseG

Git pipelines
for IBM i

deep dive

Let’s
Create

© Copyright IBM Corporation 2024

Agenda

• Why?

• Git overview

• Moving code into git

• Building code from git

• Git hosting services

• Pipelines

• Showcase

Let’s
Create

© Copyright IBM Corporation 2024

IBM i LPAR

Conventional methods: lack of control

Developer Developer Developer

DEVLIBAAPPDEV

Backup Backup Backup Backup

Change

manageme

nt

Let’s
Create

© Copyright IBM Corporation 2024

IBM i LPAR

On-prem, cloud, or hybrid

GitHub, Azure, GitLab, BitBucket, etc

Git repo

Concurrent development

Developer Developer Developer

NEWTHIN

G

feature/ne

wthing

COOLTHI

NG
BADTHING

feature/coo

lthing

bug/badthi

ng
main

MAIN

(*prod)

Let’s
Create

© Copyright IBM Corporation 2024

All change history

© Copyright IBM Corporation 2024

Git overview

6

© Copyright IBM Corporation 2024

Git: A powerful version-control system

• Linus Torvalds – “inventor of Linux” wanted a better source control system – so he wrote one

• Very popular in the open source community and increasingly in enterprises

• Distributed Version Control System

© Copyright IBM Corporation 2024

Git: fundamentally different

• Technically:

– NOT a server! NOT a service! Just a simple executable

• Best practice is to run through SSH

– Distributed (people work on their own copy)

– Stores all of its meta data in one special .git/ directory

– Very fast !

• Philosophically:

– Social Coding

– Unfettered concurrent development

This Photo by Unknown Author is licensed under CC BY-SA-NC

Two Best Attributes of Git?

1. The efficiency of branching and merging

2. The integration with the rest of the ecosystem

o Jenkins

o Jira

o Custom git hooks

o Visual Studio Code

o Git-based websites (GitHub, BitBucket, GitLab, etc)

o GitHub Desktop

o Rational Developer for i

Let’s
Create

© Copyright IBM Corporation 2024

Git from the PASE command line

Let’s
Create

© Copyright IBM Corporation 2024

GitHub, Azure, GitLab,

BitBucket, etc

Git

repo

Distributed

/repo
/.git
/qrpglesrc

programa.rpgle
programb.rpgle
programc.rpgle

/qsqlsrc
customers.sql
inventory.sql

/qcllesrc
startjob.cmd

/qcmdsrc
startjob.cmd

Cloned repo working tree

/repo
/.git
/qrpglesrc

programa.rpgle
programb.rpgle
programc.rpgle

/qsqlsrc
customers.sql
inventory.sql

/qcllesrc
startjob.cmd

/qcmdsrc
startjob.cmd

Cloned repo working tree

/repo
/.git
/qrpglesrc

programa.rpgle
programb.rpgle
programc.rpgle

/qsqlsrc
customers.sql
inventory.sql

/qcllesrc
startjob.cmd

/qcmdsrc
startjob.cmd

Cloned repo working tree

© Copyright IBM Corporation 2024

Small & Fast!

source: https://git-scm.com/about/small-and-fast

© Copyright IBM Corporation 2024

High-level flow

© Copyright IBM Corporation 2024

Staging area?

• Before the commit, files get "staged"

• Why?

– Commit only one of several changed files

– Commit only a portion of a changed file!

© Copyright IBM Corporation 2024

Hash codes

• All content is check-summed into a SHA-1 hash code

• From then on the change is referred to by that hash code

• Probability of collision is very small ~ # of sand grains on earth

• => the content is tracked so empty directories are not

• Commits are also referred to by a hash code

© Copyright IBM Corporation 2024

Branching and Merging

image source= https://git-scm.com/about

© Copyright IBM Corporation 2024

Cherry-picking

source: https://git-scm.com/book/en/v2/Distributed-Git-Maintaining-a-

Project

© Copyright IBM Corporation 2024

Cherry-picking

source: https://git-scm.com/book/en/v2/Distributed-Git-Maintaining-a-

Project

© 2018 IBM Corporation

Example: Node.js (https://github.com/nodejs/node)

https://github.com/nodejs/node

© 2018 IBM Corporation

Example: Node.js (https://github.com/nodejs/node)

https://github.com/nodejs/node

© 2018 IBM Corporation

Example: Node.js (https://github.com/nodejs/node)

https://github.com/nodejs/node

© 2018 IBM Corporation

Example: Node.js (https://github.com/nodejs/node)

https://github.com/nodejs/node

© 2018 IBM Corporation

Node.js active branches

v6.x

v8.x

v10.x

v11.x

v6.x-staging

v8.x-staging

v10.x-staging

v11.x-staging

v6.16.0-proposal

v8.15.0-proposal

v10.15.1-proposal

Long-Term Support (LTS) releases

Feature Release

Staging areas for each release

Proposal branches for LTS releases (heavily verified before landing in LTS release)

© 2018 IBM Corporation

Collaboration Example 1: Cross-project dependency

• Two development teams (A & B)

– Team A needs a small change in Team B’s code

• What happens?

– Non-collaborative:

• Team A files a requirement against Team B

• Team B establishes priority based on Team B’s needs

• Team A waits for Team B to implement

– Collaborative:

• Team A creates a branch in Team B’s repository

– … Or their own clone of the repository

• Team A commits a fix to the new branch

• Team A continues on, using the new branch

• Team B asked to review the changes and eventually merges

© 2018 IBM Corporation

Collaboration Example 2: Concurrent development

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

Two developers, working on two separate enhancements

Dev 1

Dev 2

© 2018 IBM Corporation

Collaboration Example 2: Concurrent development

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

Each needs to change multiple files

Dev 1

Dev 2

© 2018 IBM Corporation

Collaboration Example 2: Concurrent development

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

Some traditional change control systems lock files (Dev 2 does just that)

Dev 1

Dev 2

© 2018 IBM Corporation

Collaboration Example 2: Concurrent development

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

Dev 1 can’t lock the file also! Now What?

Dev 1

Dev 2

© 2018 IBM Corporation

Locking-based change control: conflict resolution

1. Developer waits for teammates to be done with the part

2. Developer takes a copy of the source part, proceeds to make changes, then later manually merges in

changes (ERROR PRONE!!)

© 2018 IBM Corporation

Collaboration Example 2: Concurrent development

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

With Git, each Dev clones the repository (and maybe create different branches)

Dev 1

Dev 2

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

© 2018 IBM Corporation

Collaboration Example 2: Concurrent development

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

When complete, changes get pushed back into central repository

Dev 1

Dev 2

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

File_01

File_02

File_03

File_04

File_05

File_06

File_07

File_08

File_09

© 2018 IBM Corporation

Git: conflict resolution

• Human eyes are required when multiple devs change the same lines of code (in reality, this is rare)

• Concurrent development is easy because:

– Everyone works on own copy

– Branching strategy further avoids conflicts

© Copyright IBM Corporation 2024

VSCode

• Has several IBM i modules for language knowledge

• Comes with Git Lens built in

• Accessing source on IBM i

– "Code for IBM i" extension allows you to access IBM i stream files directly

• Use with "Git for IBM i" extension

– Map a drive and open folder directly in VSCode

• Git Lens works seamlessly

• Requires FAST connectivity to work well

– Several VSCode extensions can keep a local folder in sync with a remote (IBM i) directory

• Git Lens works on local dir (fast and smooth)

– Several other tools for synchronizing directories (e.g. WinSCP)  Jesse's preference

• Git Lens works on local dir (fast and smooth)

Let’s
Create

© Copyright IBM Corporation 2024

Visual Studio Code

• First class git support

• IBM i integration via extensions

• Access to hundreds of git tools

• Integrates with vendors or self-managed tools

• RPGLE, COBOL, CL, SQL, and more

Development

Code for IBM iDevelopers

IBM i (dev)

Dev/compile/test

© Copyright IBM Corporation 2024

Moving source code into git

38

Let’s
Create

© Copyright IBM Corporation 2024

How to move source into git?

IBM i LPAR

QSYS.LIB Library IFS Directory Git repository

Let’s
Create

© Copyright IBM Corporation 2024

IBM i LPAR

QSYS.LIB Library IFS Directory

CPYTOSTMF

CPYTOSTMF
FROMMBR('/QSYS.lib/DEVLIB.lib/QRPGLESRC.file/PROGRAMA.mbr')
TOSTMF('/home/barry/myproject/qrpglesrc/programa.rpgle')
STMFOPT(*REPLACE) STMFCCSID(1208)

Migrate Tool (FOSS)

MIGSRCPF LIBRARY(TESTPROJ) SOURCEPF(QRPGLESRC)
OUTDIR('/home/BARRY/myproject')

ibmi-bob cvtsrcpf (FOSS)

cd myproject/qrpglesrc
makei cvtsrcpf qrpglesrc testproj

Vendor tools

https://github.com/worksofliam/migrate

© Copyright IBM Corporation 2024

Migrate Source with VSCode and "Project Explorer"

QSYS members in source
physical files

↓
Properly encoded,

terminated, and named
source files in an IFS

directory
↓

Download to local project
↓

Rename extensions
↓

Convert includes/copy
directives to Unix style

paths

CVTSRCPF
from BOB

Source Orbit

Let’s
Create

© Copyright IBM Corporation 2024

Similar look
Just a different file system!

DEVLIB
- QRPGLESRC

- PROGRAMA.RPGLE
- PROGRAMB.RPGLE
- PROGRAMC.RPGLE

- QSQLSRC
- CUSTOMERS.SQL
- INVENTORY.SQL

- QCLLESRC
- STARTJOB.CLLE

- QCMDSRC
- STARTJOB.CMD

QSYS.LIB Library

/repo
/.git
/qrpglesrc

programa.rpgle
programb.rpgle
programc.rpgle

/qsqlsrc
customers.sql
inventory.sql

/qcllesrc
startjob.cmd

/qcmdsrc
startjob.cmd

IFS and git repository

Let’s
Create

© Copyright IBM Corporation 2024

cd ./repo
git init --bare

© Copyright IBM Corporation 2024

Building in git

44

Let’s
Create

© Copyright IBM Corporation 2024

Compilers
Streamfile support

Command Supports compiling from IFS?

CRTBNDRPG / CRTRPGMOD SRCSTMF(path)

CRTSQLRPGI SRCSTMF(path)

CRTSRVPGM SRCSTMF(path)

CRTBNDCL / CRTCLMOD SRCSTMF(path)

CRTDSPF No

CRTPF / CRTLF No

RUNSQLSTM SRCSTMF(path)

CRTBNDC / CRTCMOD SRCSTMF(path)

CRTBNDCBL / CRTCBLMOD SRCSTMF(path)

Let’s
Create

© Copyright IBM Corporation 2024

Let’s
Create

© Copyright IBM Corporation 2024

Deploy and build

Local git repo IBM i IFS directory Action runs

Deploy Build

Deploy location

• Typically set only once

• Where sources get uploaded to get
compiled

• Each developer gets a unique location

• Each repos get a unique location

• The process of moving files to the
deploy location

• Different options to determine how
files get uploaded

• Typically 'Compare' is the safest

Deploy

Let’s
Create

© Copyright IBM Corporation 2024

Actions

• JSON file inside of repo

• Lists all compile commands

• Checked into git

• Common commands used by all

• User can select which Action to run
(based on the actions.json)

• Triggers the deploy process

• Runs command(s) on the server

• Also known as the build

Run Action

Let’s
Create

© Copyright IBM Corporation 2024

Deploy and build

Local git repo IBM i IFS directory Action runs

Deploy Build

Let’s
Create

© Copyright IBM Corporation 2024

Action result

• List of problems are highlighted

• Spool file result as expected

• Except built from within git

© Copyright IBM Corporation 2024

Building on IBM i is hard…

SRC-PF
– 10 char names
– Fixed record length
– Not accessible to open ecosystem, including Git and Make
– Source of the same type stored in QxxxSRC to avoid name conflicts (member type does not

disambiguate)

Libraries
– Only 2 level hierarchy to organize, with only short 10 char names

Source control
– None (sequence number dates)
– Home grown
– Proprietary IBM i systems

• Cost
• Smaller market = less investment

Build system
– Individual CRTXXXMOD + CRTPGM
– CL Scripts
– A couple of vendors have dependency-based build

© Copyright IBM Corporation 2024

How do IBM i Projects and "Bob"
overcome this?

© Copyright IBM Corporation 2024

Remember: a different (but similar) file system

MYPROJECT
• QRPGLESRC

– PROGRAMA.RPGLE
– PROGRAMB.RPGLE
– PROGRAMC.RPGLE

• QSQLSRC
– CUSTOMERS.SQL
– INVENTORY.SQL

• QCLLESRC
– START.CLLE

• QCMDSRC
– STARTJOB.CMD

QSYS.LIB Library

/my-project
• /.git
• qrpglesrc

– programa.rpgle
– programb.rpgle
– programc.rpgle

• qsqlsrc
– customers.sql
– inventory.sql

• qcllesrc
– start.clle

• qcmdsrc
– Startjob.cmd

IFS/Local File System

No more character
name restrictions

Now usable with Git
and Make

Flexible directory
structure

BOB CLI commands

• makei - the main command to interact with Bob

• crtfrmstmf - a utility to compile from stream files when the compiler only supports QSYS members

Makei functionality

• makei cvtsrcpf – convert QSYS members to Unicode IFS stream files

• makei init – create iproj.json

• makei build – build the entire project

• makei b –t <object> - build target object

• makei b –d <directory> - make all objects in the specified directory (based on Rules.mk)

• makei compile -f <stream file> - build target object of specified stream file

• makei compile –files file1: file2: … - build target objects of all specified stream files

Typical Bob
Project Structure

• iproj.json
(https://ibm.github.io/ibmi-
bob/#/prepare-the-project/iproj-
json)

• .ibmi.json
(https://ibm.github.io/ibmi-
bob/#/prepare-the-project/ibmi-
json)

• Rules.mk
(https://ibm.github.io/ibmi-
bob/#/prepare-the-
project/rules.mk)

61

Multi-library project structure
• A directory containing iproj.json is a project

• Projects cannot be nested

• Target library for creating objects is set by “objlib” attribute

• Can specify multiple target object library

• Use .ibmi.json to specify target object library for a directory

• Can also specify the EBCDIC encoding for compiler to use

PGM

Project1

DTA

iproj.json

.ibmi.json DTLIB2LIB

Project2

LIB1.ibmi.json

iproj.json

Project structure
Payroll-bob <project directory>

iproj.json

Rules.mk

SUBDIRS := data

MSTDSP.FILE: MasterDisplay.DSPF PRJMST.FILE RSNMST.FILE

PAYROLL.PGM: PAYROLL.PGM.RPGLE MSTDSP.FILE PRJMST.FILE

Data <subdirectory>

Rules.mk

RSNMST.FILE: RSNMST.TABLE

PRJMST.FILE: PRJMST.TABLE

© Copyright IBM Corporation 2024

Projects that self-describe how to build themselves!?

my-project

file.evfevent

.evfevent

source.evfevent

joblog.json

.logs

file.splf

source.splf

constants.rpgleinc

includes

.ibmi.json

QRPGLESRC

Rules.mk

source.rpgle

Rules.mk

QDDSSRC

file.pf

.env

.gitignore

.ibmi.json

iproj.json

Rules.mk

Project
Information

Configure library
list

Set
build/compile

command

Standardized
metadata format

w h bl (&…)

Configure
build/compile
environment

iproj.json in project root

© Copyright IBM Corporation 2024

Flexible subdirectories and build customization

my-project

file.evfevent

.evfevent

source.evfevent

joblog.json

.logs

file.splf

source.splf

constants.rpgleinc

includes

.ibmi.json

QRPGLESRC

Rules.mk

source.rpgle

Rules.mk

QDDSSRC

file.pf

.env

.gitignore

.ibmi.json

iproj.json

Rules.mk

EBCDIC encoding
for compiler

Custom variable
values so that each

developer can
customize build

.ibmi.json in project root or
subdirectories

.env in project root

Target object library
for directory

© Copyright IBM Corporation 2024

Control what objects to build and how to build them

my-project

file.evfevent

.evfevent

source.evfevent

joblog.json

.logs

file.splf

source.splf

constants.rpgleinc

includes

.ibmi.json

QRPGLESRC

Rules.mk

source.rpgle

Rules.mk

QDDSSRC

file.pf

.env

.gitignore

.ibmi.json

iproj.json

Rules.mk

Rules.mk in project root

Makefile with list of
objects to be built and
from which source files

Rules.mk in subdirectories

Declare subdirectories
to be built

© Copyright IBM Corporation 2024

Build and Compile Process

Command Description

makei compile -f <stream file> Compile target object of specified stream file

makei compile –f l f l 1: f l 2: … Compile target objects of all specified stream files

Command Description

makei init Create iproj.json

makei cvtsrcpf Convert QSYS members to Unicode IFS stream files

Command Description

makei build Build the entire project

makei b –t <object> Build target object

makei b –d <directory> Build all objects in the specified directory (based on
Rules.mk)

Initialization and Migration

Building

Compiling

© Copyright IBM Corporation 2024

Ins and Outs of
IBM i Project Explorer

© Copyright IBM Corporation 2024

Overview

The ultimate tool for local development on IBM i!

View job logs

Local source
vs.

IFS source

Manage library
list

Modify include
paths

Set variables Build and
Compile

© Copyright IBM Corporation 2024

Installation

Download VS Code extensions
IBM i Project Explorer and

Code for IBM i

Run
yum install bob

on IBM i

Download
Visual Studio Code

© Copyright IBM Corporation 2024

Create a New Project

• Create and open a folder for your project

• Create an iproj.json

• Set the project description

© Copyright IBM Corporation 2024

Connect to an IBM i

• Open the Connection Browser from
Project Explorer

• Create new IBM i connection from the
Server view

© Copyright IBM Corporation 2024

Deployment

• Set deploy location
– Where source gets uploaded to
– Typically set one
– Each developer gets a unique

location
– Each repository gets a unique

location

• Set deployment method
– Compare (typically the safest)
– Changes (typically the fastest)
– Working Changes
– Staged Changes
– All

• Deploy project
– Moves files to deploy location

based on deployment method

IBM i
Directory

Deploy

Local Project Target
Library

Build

© Copyright IBM Corporation 2024

Work with Variables

• Reusable project definition
that can be used by multiple
developers or in automated
builds

• View and set variables (for
libraries, include paths, or
build/compile commands)

• Browse for libraries and
assign values to variables

• Configure hardcoded values
as variables

Do not push .env file to Git!

© Copyright IBM Corporation 2024

Manage the Library List

• P j ’ l b y l mp f
y p f l ’ l b y l (f m JOBD)
+ set of project specific libraries

• Add to beginning/end of library list
(preUsrlibl and postUsrlibl) and set
current library (curlib in iproj.json)

• Reorder library list

• Browse objects and members

• Manage libraries, objects, and members

© Copyright IBM Corporation 2024

Browse Object Libraries

• The place for developers to easily see, debug,
and manipulate the results of your build

• Another place to manage libraries in iproj.json
(curlib, objlib, preUsrlibl, postUsrLibl)

• Manage libraries, objects, and members

© Copyright IBM Corporation 2024

Manage Include Paths

• Self-contained projects should know
where to find includes within the project

• Add, remove, and reorder include paths

• Visualize if includes resolve locally or to
remote IFS

© Copyright IBM Corporation 2024

Build and Compile

Deploy
↓

Run build or compile command
(any build framework)

↓
Download logs and evfevent files

• Building
• Set build command
• Run Build (Ctrl+Shift+b or Cmd+Shift+b)

• Compiling
• Set compile command
• Run compile (Ctrl+Shift+c or Cmd+Shift+c)

• On active editor
• On file or directory in File Explorer
• On file or directory in Source

© Copyright IBM Corporation 2024

Run Actions

IBM i P j Expl l pp C d f IBM ’ m w k p

© Copyright IBM Corporation 2024

View Diagnostics

• Visualize build or compile
diagnostics in the
Problems view

• Evfevent file diagnostics
are dumped in a .evfevent
directory after a build or
compile

• Diagnostics are also
rendered inline in the
source file

© Copyright IBM Corporation 2024

View Job Logs

• Visualize and manage
anything that could be seen
in an IBM i job log including
second level help

• Job log and spool files are
dumped in .logs directory
after a build or compile

• Track up to 10 of the
previous logs in memory

• Organized by the ILE
objects being built

• Filter by failed objects or
severity

© Copyright IBM Corporation 2024

Integration

Source Orbit ARCAD-Elias

What can you
integrate with
IBM i Project

Explorer’s API?

Let’s
Create

© Copyright IBM Corporation 2024

/COPY and /INCLUDE

• Both /COPY and /INCLUDE work for both file systems

• QSYS

• IFS

• Can also work across file systems

• Copy in IFS source from within source member

• Vice-versa

/INCLUDE QRPGLEREF,REF001
/INCLUDE `qrpgleref/ref001.rpgle’

Include syntax

Let’s
Create

© Copyright IBM Corporation 2024

© Copyright IBM Corporation 2024

Git hosting services

84

Let’s
Create

© Copyright IBM Corporation 2024

Where to host?

Local repo Remote repo

Let’s
Create

© Copyright IBM Corporation 2024

Commit History

GitHub

Azure DevOps

GitLab

Bamboo

Let’s
Create

© Copyright IBM Corporation 2024

Pull Requests

GitHub

Azure DevOps

GitLab

Bamboo

Let’s
Create

© Copyright IBM Corporation 2024

CI/CD

GitHub Actions

Azure DevOps Pipelines

GitLab CICD

Bamboo

Let’s
Create

© Copyright IBM Corporation 2024

Insights

Let’s
Create

© Copyright IBM Corporation 2024

Project Management

GitHub

Azure DevOps

GitLab

Bamboo (Jira)

© Copyright IBM Corporation 2024

Git server examples

91

© Copyright IBM Corporation 2024

92

Hidden Gem: GitBucket on IBM i

© Copyright IBM Corporation 2024

93

Gitlab on IBM Power

© Copyright IBM Corporation 2024

Deploying with Podman

94

© Copyright IBM Corporation 2024

Building pipelines

95

build server

Jenkins, GitLab CICD, Azure DevOps

IBM i libraries

release/091123main

dev

feature/6473-new-input

bug/6470-broken-logic

MAIN

DEV

FEA6473

BUG6470

rel091123.savf

Automated build

Automation

Pipeline steps

Source Control

IBM i CISource Orbit

Development

Code for IBM iDevelopers

IBM i (dev)

Dev/compile/test

Git repo

Your systems

IBM i (test) IBM i (prod)
IBM i (PowerVS)

© Copyright IBM Corporation 2024

Git hooks

• To install a git hook, just put an executable file in the hooks directory

• The name of the file is the hook

• Example, to install a post-receive hook, do this from the .git/hooks directory (depending on how you created

the repository, the hooks directory may need to be created)

• Then, populate the file with the commands needed

© Copyright IBM Corporation 2024

git hooks (https://git-scm.com/docs/githooks)

• applypatch-msg

• pre-applypatch

• post-applypatch

• pre-commit

• prepare-commit-msg

• commit-msg

• post-commit

• pre-rebase

• post-checkout

• post-merge

• pre-push

• pre-receive

• update

• post-receive

• post-update

• push-to-checkout

• pre-auto-gc

• post-rewrite

• rebase

© 2016, 2020 IBM Corporation

Let’s
Create

© Copyright IBM Corporation 2024

Git tooling and automation

Source Control

Git repo

Repo hosts

• Repository and user management

• Integrated code management and code
review tooling

• Full customisable CICD environments

• Integrates nicely with IBM i via SSH

© Copyright IBM Corporation 2024

102

Leverage Webhooks from git server

Let’s
Create

© Copyright IBM Corporation 2024

Automation steps

Source Control & Automation

Git repo

GitLab .gitlab-ci.yml

Azure DevOps azure-pipeline.yml

GitHub anything.yml

Jenkins Jenkinsfile

yml can also be yaml

Tools available

IBM i CISource OrbitCode for IBM i

Source Orbit
ILE dependency analysis

Source Orbit

What does it do?

• It's a CLI tool

• Build dependency lists for
RPGLE, DDS, SQL, CL, etc

• Generate impact analysis
information

• Create scripts to automate builds of
your application code

• Cleans up your repository

• It's open-source!

Repository cleanup

Show code in a repository where the copy statements have been corrected

Impact Analysis

Let’s
Create

© Copyright IBM Corporation 2024

pr.yaml

name: Source Orbit Impact Report

on:
pull_request:

types: [opened]

jobs:
so-impact:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4

with:
fetch-depth: 0

- uses: actions/setup-node@v3
with:

node-version: 18

- run: npm i -g @ibm/sourceorbit

- run: npm i -g @ibm/ibmi-ci

- name: Generate impact information
run: so -bf imd -l `git diff --name-only origin/main origin/${GITHUB_HEAD_REF}`

- name: Adding markdown
run: cat impact.md >> $GITHUB_STEP_SUMMARY

Let’s
Create

© Copyright IBM Corporation 2024

Simple SSH tool

CLI usage

ici \

--rcwd "./builds/myproject" \

--push "." \

--cmd "/QOpenSys/pkgs/bin/gmake BIN_LIB=MYLIB"

Let’s
Create

© Copyright IBM Corporation 2024

Pipeline step

jobs:
so-impact:

environment: COMMON1
runs-on: ubuntu-latest
steps:

install SO and ibmi-ci

- name: Generate makefile
run: so -bf make -l `git diff --name-only origin/main origin/${GITHUB_HEAD_REF}`

- name: Deploy to IBM i
run: |

ici \
--cmd "mkdir -p './builds/ics_${GITHUB_HEAD_REF}'" \
--rcwd "./builds/ics_${GITHUB_HEAD_REF}" \
--push "." \
--cmd "/QOpenSys/pkgs/bin/gmake LIBL='CMPSYS' BIN_LIB=$(so -bl ${GITHUB_HEAD_REF})"

env:
IBMI_HOST: ${{ secrets.IBMI_HOST }}
IBMI_USER: ${{ secrets.IBMI_USER }}
IBMI_PASSWORD: ${{ secrets.IBMI_PASSWORD }}
IBMI_SSH_PORT: ${{ secrets.IBMI_SSH_PORT }}

Development Code for IBM i RDi Developer writes and compiles code

Dependency management

Impact analysis
Source Orbit

Automated tools to generate build scripts

and impact analysis reports automatically

Deployment IBM i CI
Deploys code to IBM i and

runs the build scripts automatically

Automation

Pipeline steps

Source Control & Automation

IBM i CISource Orbit

Development

Code for IBM iDevelopers

IBM i (dev)

Dev/compile/test

Git repo

Your systems

IBM i (test) IBM i (prod)
IBM i (PowerVS)

Travis CI

for Travis CI*

for Travis CI*

before_install:
- echo "//npm.pkg.github.com/:_authToken=${GITHUB_TOKEN}" > .npmrc
- npm config --global set @ibm:registry https://npm.pkg.github.com
- cp .npmrc ~/

install:
- npm install -g @ibm/sourceorbit@0.4.25

for Travis CI*

script:
BASE_LIB is always set for the library list
We assume BIN_LIB is set based on the branch
e.g. main = CMPSYS
dev = CMPSYSDEV
* = generated by SO

- export LIBL="$BASE_LIB"
- export BRANCHLIB="$(so -bl ${TRAVIS_BRANCH})"

If BIN_LIB is empty, try and use the branch lib
- |

if [[-z "${BIN_LIB}"]]; then
export BIN_LIB="${BRANCHLIB}"
export LIBL="${LIBL} ${BIN_LIB}"

fi

Build specific objects based on branch
- |

if test "$BASE_LIB" = "$BIN_LIB"
then
$(npm config get prefix)/bin/so -bf make

else
$(npm config get prefix)/bin/so -bf make -f $(git diff --name-only $TRAVIS_COMMIT_RANGE)

fi

echo gmake library all BIN_LIB="${BIN_LIB}" LIBL="${LIBL}"

Used to fetch a unique library

name based on branch

Generates a makefile

Gets a list of changes

file in this commit

If building in a branch,

then build specific files

© Copyright IBM Corporation 2024

Showcase

121

Impact Analysis

name: Source Orbit Impact Report

on:
pull_request:

types: [opened]

jobs:
so-impact:

runs-on: ubuntu-latest
permissions:

packages: read
issues: write
pull-requests: write
contents: read

steps:
- uses: actions/checkout@v4

with:
fetch-depth: 0

- uses: actions/setup-node@v3
with:

node-version: 20
registry-url: https://npm.pkg.github.com/

- run: npm i -g @ibm/sourceorbit
env:

NODE_AUTH_TOKEN: ${{secrets.GITHUB_TOKEN}}

- name: Generate impact information
run: so -bf imd -l `git diff --name-only origin/main origin/${GITHUB_HEAD_REF}`

- name: Adding markdown
run: cat impact.md >> $GITHUB_STEP_SUMMARY

- name: Post comment
uses: actions/github-script@v5
with:

script: |
github.rest.issues.createComment({

issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
body: ' A new change report is available based on this PR being created. ...'

})

Automated builds

jobs:
so-impact:
environment: COMMON1
runs-on: ubuntu-latest
steps:
install SO and ibmi-ci

- name: Generate makefile
run: so -bf make -l `git diff --name-only origin/main origin/${GITHUB_HEAD_REF}`

- name: Deploy to IBM i
run: |
ici \
--cmd "mkdir -p './builds/ics_${GITHUB_HEAD_REF}'" \
--rcwd "./builds/ics_${GITHUB_HEAD_REF}" \
--push "." \
--cmd "/QOpenSys/pkgs/bin/gmake LIBL='CMPSYS' BIN_LIB=$(so -bl ${GITHUB_HEAD_REF})"

env:
IBMI_HOST: ${{ secrets.IBMI_HOST }}
IBMI_USER: ${{ secrets.IBMI_USER }}
IBMI_PASSWORD: ${{ secrets.IBMI_PASSWORD }}
IBMI_SSH_PORT: ${{ secrets.IBMI_SSH_PORT }}

Multiple environments can be configured in your org/repo

Thank you!!

133

	Slide 1: Git pipelines for IBM i
	Slide 2: Agenda
	Slide 3: Conventional methods: lack of control
	Slide 4: Concurrent development
	Slide 5: All change history
	Slide 6: Git overview
	Slide 7: Git: A powerful version-control system
	Slide 8: Git: fundamentally different
	Slide 9: Two Best Attributes of Git?
	Slide 10: Git from the PASE command line
	Slide 11
	Slide 12: Small & Fast!
	Slide 13: High-level flow
	Slide 14: Staging area?
	Slide 15: Hash codes
	Slide 16: Branching and Merging
	Slide 17: Cherry-picking
	Slide 18: Cherry-picking
	Slide 19: Example: Node.js (https://github.com/nodejs/node)
	Slide 20: Example: Node.js (https://github.com/nodejs/node)
	Slide 21: Example: Node.js (https://github.com/nodejs/node)
	Slide 22: Example: Node.js (https://github.com/nodejs/node)
	Slide 23: Node.js active branches
	Slide 24: Collaboration Example 1: Cross-project dependency
	Slide 25: Collaboration Example 2: Concurrent development
	Slide 26: Collaboration Example 2: Concurrent development
	Slide 27: Collaboration Example 2: Concurrent development
	Slide 28: Collaboration Example 2: Concurrent development
	Slide 29: Locking-based change control: conflict resolution
	Slide 30: Collaboration Example 2: Concurrent development
	Slide 31: Collaboration Example 2: Concurrent development
	Slide 32: Git: conflict resolution
	Slide 33: VSCode
	Slide 34: Visual Studio Code
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Moving source code into git
	Slide 39: How to move source into git?
	Slide 40
	Slide 41: Migrate Source with VSCode and "Project Explorer"
	Slide 42: Similar look
	Slide 43
	Slide 44: Building in git
	Slide 45: Compilers
	Slide 46
	Slide 47: Deploy and build
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Deploy and build
	Slide 53
	Slide 54: Building on IBM i is hard…
	Slide 55: How do IBM i Projects and "Bob" overcome this?
	Slide 56: Remember: a different (but similar) file system
	Slide 57
	Slide 58: BOB CLI commands
	Slide 59: Makei functionality
	Slide 60: Typical Bob Project Structure
	Slide 61: Multi-library project structure
	Slide 62: Project structure
	Slide 63: Projects that self-describe how to build themselves!?
	Slide 64: Flexible subdirectories and build customization
	Slide 65: Control what objects to build and how to build them
	Slide 66: Build and Compile Process
	Slide 67: Ins and Outs of IBM i Project Explorer
	Slide 68: Overview
	Slide 69: Installation
	Slide 70: Create a New Project
	Slide 71: Connect to an IBM i
	Slide 72: Deployment
	Slide 73: Work with Variables
	Slide 74: Manage the Library List
	Slide 75: Browse Object Libraries
	Slide 76: Manage Include Paths
	Slide 77: Build and Compile
	Slide 78: Run Actions
	Slide 79: View Diagnostics
	Slide 80: View Job Logs
	Slide 81: Integration
	Slide 82: /COPY and /INCLUDE
	Slide 83
	Slide 84: Git hosting services
	Slide 85: Where to host?
	Slide 86: Commit History
	Slide 87: Pull Requests
	Slide 88: CI/CD
	Slide 89: Insights
	Slide 90: Project Management
	Slide 91: Git server examples
	Slide 92: Hidden Gem: GitBucket on IBM i
	Slide 93: Gitlab on IBM Power
	Slide 94: Deploying with Podman
	Slide 95: Building pipelines
	Slide 96
	Slide 97
	Slide 98: Git hooks
	Slide 99: git hooks (https://git-scm.com/docs/githooks)
	Slide 100
	Slide 101: Git tooling and automation
	Slide 102: Leverage Webhooks from git server
	Slide 103: Automation steps
	Slide 104: Tools available
	Slide 105
	Slide 106: Source Orbit 🪐
	Slide 107: Repository cleanup
	Slide 108: Impact Analysis
	Slide 109
	Slide 110
	Slide 111
	Slide 112: CLI usage
	Slide 113: Pipeline step
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Travis CI
	Slide 118
	Slide 119
	Slide 120
	Slide 121: Showcase
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133: Thank you!!

