Testing on the IBM |

Introduction to Wim Jongman

Wim Jongman,
CTO of Remain Software

Dutchy from Haarlem

4 kids, one wife
Nerd

N rﬂrw F =~ |fx e o o
([|| | 1 1‘_ ‘ Ll 71-‘ L e« ®© o ® o o .
"\) UM U . ® & o o ¢ o o o
o o e ® & 0 o & = o 0 e ® »
e o o « ® 8 ® 0 © 0 o o 0o 0 o e o o o o
e o o o . e © & © & & o & & o 0 o o o e e o 0o o o .
- . ® 8 ® © © ° ® © & 0 & O O O © O O O O O O o & O O O 4 0 0 e .
. e e ¢ ® © © © 0 & © © & O O © O © O O O © O O O O O O O O O O O O O O .
e o & o o e & & & & 0 © & 0 0 O O O O O O O O O S 6 6 6 6 O 6 O O 6 O 6 6 4 0 0 . e ®
e o o o o o o . ® ® & 0 0 0 © © & © 0 O 0 O O O O O O O O O O O O & O O O O O O O 6 O 0 0 e o o o

e @ & & & & & & & ¢ & 0 O 0 0 B O O O T P ET SOEOE SO Y SY N Y Y7...7.....
e & & 0 & 0 O 0 5 O O O 0 B O B O " O O O O 0 0 e & & & & & ° & 0O O O O 0 0 O 4 0 " O O 0 O 0 0 0

Remain Software specializes in delivering innovative and reliable
solutions for application lifecycle management (ALM), change
management, workflow, and DevOps. With 30 years of experience,
we offer tools designed to streamline software development
processes across various platforms, including IBM i, Windows, and
Unix/Linux.

TD/OMS, our flagship product, is a scalable and user-friendly ALM
solution that supports software changes, development,
deployment, and modernization projects. TD/OMS enables
development teams to collaborate effectively and manage
software components throughout different stages of development.

Happy DevOps teams use
Remain Software

[Unit - Open Source Unit Testing

TD/OMS - Full Stack DevOps for IBM i

Gravity - Ticketing and Workflow System
OpenAPI Studio - REST Design and Generation
OCTO - DevOps for IBM i Modernization

XREF - Enterprise Source Cross Reference
MiWorkplace - Lightweight RDi Replacement

X-Analysis - Comprehensive Object Analytics
ReplicTest - Full Testing Software for IBM i

I b
b

33

https://remainsoftware.com

https://miworkplace.com

https://github.com/remainsoftware
https://github.com/i-unit/iunit

Testing in the Software Development Life Cycle

(o)

¢
O

Peer Review

Ensure code quality, adherence to
Objective standards, and early detection of
potential issues.

Code-level review by peers focusing on

Scope logic, readability, test coverage, and
adherence to coding standards.
Tools TD/OMS, Rdi, GitHub, GitLab, etc..

Reviewing a pull request for adherence
Example to coding guidelines and ensuring edge
READY cases are addressed.

Vg

¢k

7y
]

=F

¢ %

DEV

.

Y [
[

(V]

& 1=
READY

e
Gl

(o)

(

O

- |

PROD

method |____Unit Testing____

Verify that individual functions or

Objective
J components behave as expected.

Smallest testable units, often

Scope
automated.

Tools iUnit, iRPGUnit, Jest, JUnit, NUnit, etc
Ensuring a function calculatin

Example & &

discounts works for all edge cases.

ﬁs/

|

P

a1t

@

¢ %

DEV

P

\ 140

‘

o,
=
@)
o

3

m Integration Testing

-y \ Objective
Scope
Tools
% =y
G [
&4 R T
Example

Ensure that different components/modules
interact correctly.

Multiple units combined, focusing on data
flow and API integration.

ReplicTest, iUnit with Curl, TestContainers, o
or custom integration tests.

Testing a frontend form with a backend API

to validate end-to-end data processing.
4 147
A

38

(V]

£
IEF
READY

m System Testing

Validate the entire system’s behavior

Objective

against requirements.

The whole application or system in a
Scope .

controlled environment.

ReplicTest, Selenium, Cypress, or
Tools P yp

manual testing.

Simulating user workflows like login,
Example
checkout, or user management.

'4

¥
2L P
|

@

¢ %

ﬁi

DEV

-

\ 140

38

(V]

& f

#

READY

Jlrm]|
l| [il

M Regression Testing

Confirm that new changes haven’t

Objective ' existing functionality.

Previously developed and tested
Scope

features.

ReplicTest, iUnit, Automated
Tools . .

regression test suites.

Running tests for all major workflows
Example

after adding a new feature.

'4

¢ %

@

DEV

<

0 a

Fo

(V]

& f

#

READY

Jlrm]|
l| [il

< m Performance Testing

Assess speed, responsiveness, and
Objective stability under expected and stress
conditions.

Application as a whole or specific

Scope bottlenecks.

Tools JMeter, Gatling, or LoadRunner.
= Checking response times under 1,000
4,1 Example

concurrent users.

4

¢ %

@

DEV

Y o

0 a

V / 2
m User Acceptance Testing

Validate that the feature meets

=~ b Objective business needs and is ready for end
_ users.

Scope New features and bug fixes 5

Tools None typically (manual testing with

%, stakeholders).
2

y =oar | BRI Allowing a sample group to use the

- = new feature and provide feedback.
READY 0 @

DEV

0

“[I"t

(el
i

lne]]
ih

(]
IR
it

READY

U]

m Security Testing

Ensure the application is resistant to

Objective .
J security threats.

Vulnerabilities, penetration testing,

Scope and compliance with security
standards.
OWASP ZAP, Burp Suite, or manual
Tools . .
ethical hacking.
Testing for SQL injection
Example

vulnerabilities in input fields.

/)
& -

DEV

=

(el
|!|.||
LilE’l“

lne]]
ih

¢k

fjm]
el
it

READY

4

Ul

m Usability Testing

Assess the feature’s user experience

Objective

J and ease of use.
Scope Real-world scenarios with users.
Tools Observation and user testing tools.

Observing users navigating a new
Example dashboard for confusion or
inefficiency.

(B

”ruii
q
2
-3

m Beta Testing

Gather feedback from a broader user

ﬁg iii = Objective base in a near-production
\ environment.
ﬂ Feature released to selected users [=)
Scope (internal or external) under real-world
conditions.

Y Tools Feature toggles and analytics tools.

Releasing a new messaging feature to
s=== Example 8 Eing

-y = 5% of users. Ve
READY 0 @
i‘ #

DEV

&

“[I"t

(el
i

lne]]
ih

el

m Smoke Testing
& i Objective Quickly verify that the basic

functionality works after deployment.

Scope High-level, covering critical workflows.

¥ Tools Manual or automated test scripts.

=}
U

Example Checking that the login page loads and

- : - accepts credentials. Ve
READY 0@

DEV

(]
IR

il

I!|I|[

“[I"h

(el
i

J|rmf]
T

g

b

L

& |
&

(]
IR

READY

Ul

a - m Exploratory Testing

Discover unexpected issues by

Objective : .
J exploring the system creatively.
Entire application, focusing on areas
Scope PP g
prone to errors.
Tools None typically (manual testing).
Manually testing edge cases or unusual
Example y gede

workflows. Ve
OO

=}
U

¢k

(]
IR

READY

Ul

Confirm that the deployment didn’t

i\i Method | Deployment Testing
O |

Ol introduce issues in production.
Scope Pre Production environment.
Tools TD/OMS

Verifying the live application and

Example . e e
P rolling back if critical errors occur.

V'

140

PR \cthod | A/B Testing

%

L

& |
&

(]
IR

READY

Ul

Objective

Scope
Tools

Example

#

Compare two versions of a feature to
determine effectiveness.

Limited rollout with monitoring
tools.

None

Testing two Ul designs to see which
performs better with users.

Method

Peer Review

Unit Testing

Integration
Testing

System
Testing
Regression
Testing

Performance
Testing

User
Acceptance
Testing (UAT)

Security
Testing

Usability
Testing

Beta Testing

Smoke Testing

Exploratory

TActine

Objective Scope

Ensure code quality, adherence to
standards, and early detection of
potential issues.

Code-level review by peers focusing on
logic, readability, test coverage, and
adherence to coding standards.

Verify that individual functions or

Smallest testable units, often automated.
components behave as expected.

Ensure that different
components/modules interact correctly.

Multiple units combined, focusing on data
flow and API integration.

Validate the entire system’s behavior
against requirements.

Confirm that new changes haven’t
broken existing functionality.

Assess speed, responsiveness, and
stability under expected and stress
conditions.

The whole application or system in a
controlled environment.

Previously developed and tested features.

Application as a whole or specific
bottlenecks.

Validate that the feature meets business Real-world scenarios with business
needs and is ready for end users. stakeholders or selected users.

Ensure the application is resistant to
security threats.

Vulnerabilities, penetration testing, and
compliance with security standards.

Assess the feature’s user experience and . .
Real-world scenarios with user personas.

ease of use.

Feature released to selected users

(internal or external) under real-world

conditions.

Gather feedback from a broader user
base in a near-production environment.

Quickly verify that the basic
functionality works after deployment.
Discover unexpected issues by exploring Entire application, focusing on areas

+hA cruckAarma ArAaativahg

High-level, covering critical workflows.

nrann +A ArvrAave

Tools

Example

Reviewing a pull request for adherence to

GitHub, GitLab, Bitbucket coding guidelines and ensuring edge cases

Jest, JUnit, NUnit, etc.

Postman, TestContainers,

or custom integration
tests.

Selenium, Cypress, or
manual testing.
Automated regression
test suites.

JMeter, Gatling, or
LoadRunner.

None typically (manual
testing with
stakeholders).

OWASP ZAP, Burp Suite,
or manual ethical
hacking.

Observation and user
testing tools.

Feature toggles and
analytics tools.

Manual or automated
test scripts.
None typically (manual

fAactin~)

are addressed.

Ensuring a function calculating discounts
works for all edge cases.

Testing a frontend form with a backend API
to validate end-to-end data processing.

Simulating user workflows like login,
checkout, or user management.

Running tests for all major workflows after
adding a new feature.

Checking response times under 1,000
concurrent users.

Allowing a sample group to use the new
feature and provide feedback.

Testing for SQL injection vulnerabilities in
input fields.

Observing users navigating a new dashboard
for confusion or inefficiency.

Releasing a new messaging feature to 5% of
users.

Checking that the login page loads and
accepts credentials.
Manually testing edge cases or unusual

wviAvbflAav~

How many bugs reach producﬁ)n without testing?

Defect Density:

Industry averages suggest a defect
density ranging from 1 to 5 bugs per
KLOC.

KLOC = 1000 (1K) Lines Of Code.

Defect Detection Efficiency (DDE): Different
testing methods have varying effectiveness in
identifying defects. The DDE represents the
percentage of total defects detected during a
specific testing phase. While exact percentages
can vary based on numerous factors, general
industry observations provide the following
approximate DDE values:

Wikipedia

Peer Review: ~“60%

Unit Testing: ~30%

Integration Testing: ~35%

System Testing: ~40%

User Acceptance Testing (UAT): ~15%
Beta Testing: ~10%

U A s

-
~
: B
st

What are you testing?

s] I

gy

Ine

ipel

The broken p

The broken
PROGRAMMER
pipeline

BR2TST

BR2DEV

BRATST

BR1DEV

BRANCH 2

BRANCH 1

\\
\B
o

What data are you testing with?

T=f(P,C,D)

Where:

* T: Test Result

* P: Changed Program
* C: Test Case

* D: Input Data provided during the test

Failures can be attributed to:

1. Change in the Program Logic (Regression): T' = f(Pa,C, D)
o P represents a change in the program logic or version.
» A regression in the program may result in a failure.

2. Change in the Data (New or Invalid Inputs): T' = f(P,C, Da)
e DA, indicates that the input data has changed.
» New or unexpected input data could lead to incorrect results.

3. Change or Error in the Test Case Logic: T = f(P,Ca, D)
o (C reflects a change or error in the test case definition or expected outcome.

» If the test case is incorrect, it might falsely indicate a failure.

e If your PROGRAM changes AND your DATA changes:
* Where is the issue?

Bottom line:

 Don’t change your test data

Unit Testing

pgm parm(&numl &operator &num2 &result)

dcl &numl *dec (15 5)
dcl &operator *char (1)
dcl &num2 *dec (15 5)
dcl &result *dec (15 5)

if (&operator *eq '+') then(do)
chgvar &result (&numl + &num2)
return

enddo

if (&operator *eq 'x') then(do)
chgvar &result (&numl + &num2)
return

enddo

endpgm

Unit Testing rules

pgm

dcl &numl *dec (15 5)

dcl &operator *char (1)40
dcl &num2 *dec (15 5) ~
dcl &result *dec (15 5)

chgvar &numl (5)
chgvar &num2 (10)
call calculator parm(¨ '+' &num2 &result)

if (&result *ne 15) then(do)
SNDPGMMSG MSGID(CPF9898) +
MSGF (QCPFMSG) +
MSGTYPE (*ESCAPE) +
MSGDTA('Calc addition: Expected 15
but got ' *cat %char(&result))
enddo

endpgm

pgm

dcl &numl *dec (15 5)

dcl &operator *char (1)40
dcl &num2 *dec (15 5) ~
dcl &result *dec (15 5)

chgvar &numl (5)
chgvar &num2 (10)
call calculator parm(¨ 'x' &num2 &result)

if (&result *ne 50) then(do)
SNDPGMMSG MSGID(CPF9898) +
MSGF (QCPFMSG) +
MSGTYPE (*ESCAPE) +
MSGDTA('Calc mulitply: Expected 50
but got ' *cat %char(&result))
enddo

endpgm

Unit Testing
Where do your business rules live?

‘1_r
F /
2 A

i

Unit Testing

 Code according to MVC principles
* Split Business Rules from Ul

* Use Service Programs

 Code with modernization in mind

Peer Review

Integration Test

,,,,M,_
P ’

JEST, Junit, Etc..

Open Source Tools

Tool

Selenium

JUnit

TestNG

Cypress

Appium

Postman

JMeter

Robot

Framework

Playwright

iUnit

Use Case

Web application

testing

Unit testing (Java)

Unit and integration

testing

End-to-end web

testing

Maobile app testing

APl testing

Performance and load

testing

Acceptance testing

End-to-end web
testing

Unit testing on IBM 1

systems

Key Features

Cross-browser support, multi-language compatibility, record-

and-playback with Selenium IDE.

Annotations for test cases, integration with Cl/CD tools, and

detailed test reporting.

Parallel test execution, flexible test configurations, and data-

driven testing capabilities.

Real-time reloads, time-travel debugging, and built-in test runner

with assertions.

Cross-platform support (105, Android), testing for native, hybrid,

and mobile web apps.

API design, testing, and documentation; automated testing with

collections; mock server setup.

Testing of web applications, databases, REST APls; graphical

interface for test plan creation.

Keyword-driven testing, human-readable test cases, extensible

with custom libraries.

Supports modern web browsers, parallel and cross-browser

testing, auto-wait mechanism.

Lightweight framewaork for IBM |, supports CLLE programs,

integrates with change management systems.

Commercial Tools

Tool

ReplicTest

TestBench

X-Datatest

IBM
Performance

Tools for i

Description

Automated end-to-end testing
tool for IBM i applications,

including 5250 green screens.

Comprehensive testing

solution for IBM i applications.

Data and test management

solution for IBM i applications.

A suite of performance
monitoring and analysis tools

for IBM i systems.

Key Features

5250 1/O encapsulation, web services
support, automated database
management, and code coverage

analysis.

Test data management, batch process
testing, database testing, data

masking, and rollback capabilities.

Test data anonymization, compliance
with GDPR/HIPAA, code coverage
reports, and development workflow

integration.

Performance data collection, system
health monitoring, and detailed
reporting through IBM Navigator for

Website

Polverini &

Partners

Original

Software

Fresche

Solutions

IBM Docs

