
Testing on the IBM i

Introduction to Wim Jongman

Wim Jongman,
CTO of Remain Software

Dutchy from Haarlem

4 kids, one wife

Nerd

Remain Software specializes in delivering innovative and reliable
solutions for application lifecycle management (ALM), change
management, workflow, and DevOps. With 30 years of experience,
we offer tools designed to streamline software development
processes across various platforms, including IBM i, Windows, and
Unix/Linux.

TD/OMS, our flagship product, is a scalable and user-friendly ALM
solution that supports software changes, development,
deployment, and modernization projects. TD/OMS enables
development teams to collaborate effectively and manage
software components throughout different stages of development.

Happy DevOps teams use
Remain Software

• IUnit – Open Source Unit Testing
• TD/OMS – Full Stack DevOps for IBM i
• Gravity - Ticketing and Workflow System
• OpenAPI Studio – REST Design and Generation
• OCTO – DevOps for IBM i Modernization
• XREF – Enterprise Source Cross Reference
• MiWorkplace – Lightweight RDi Replacement

• X-Analysis – Comprehensive Object Analytics
• ReplicTest – Full Testing Software for IBM i

• https://remainsoftware.com
• https://miworkplace.com
• https://github.com/remainsoftware
• https://github.com/i-unit/iunit

Testing in the Software Development Life Cycle

Embrace Change. Remain In Control. DEV

READY

PROD

DevOps Flow

Peer ReviewMethod

Ensure code quality, adherence to
standards, and early detection of
potential issues.

Objective

Code-level review by peers focusing on
logic, readability, test coverage, and
adherence to coding standards.

Scope

TD/OMS, Rdi, GitHub, GitLab, etc..Tools

Reviewing a pull request for adherence
to coding guidelines and ensuring edge
cases are addressed.

Example

Unit TestingMethod

Verify that individual functions or
components behave as expected.Objective

Smallest testable units, often
automated.Scope

iUnit, iRPGUnit, Jest, JUnit, NUnit, etcTools

Ensuring a function calculating
discounts works for all edge cases.Example

Integration TestingMethod

Ensure that different components/modules
interact correctly.

Objective

Multiple units combined, focusing on data
flow and API integration.

Scope

ReplicTest, iUnit with Curl, TestContainers,
or custom integration tests.Tools

Testing a frontend form with a backend API
to validate end-to-end data processing.Example

System TestingMethod

Validate the entire system’s behavior
against requirements.Objective

The whole application or system in a
controlled environment.Scope

ReplicTest, Selenium, Cypress, or
manual testing.Tools

Simulating user workflows like login,
checkout, or user management.Example

Regression TestingMethod

Confirm that new changes haven’t
broken existing functionality.Objective

Previously developed and tested
features.Scope

ReplicTest, iUnit, Automated
regression test suites.Tools

Running tests for all major workflows
after adding a new feature.Example

Performance TestingMethod

Assess speed, responsiveness, and
stability under expected and stress
conditions.

Objective

Application as a whole or specific
bottlenecks.Scope

JMeter, Gatling, or LoadRunner.Tools

Checking response times under 1,000
concurrent users.Example

User Acceptance TestingMethod
Validate that the feature meets
business needs and is ready for end
users.

Objective

New features and bug fixesScope

None typically (manual testing with
stakeholders).Tools

Allowing a sample group to use the
new feature and provide feedback.Example

Security TestingMethod

Ensure the application is resistant to
security threats.Objective

Vulnerabilities, penetration testing,
and compliance with security
standards.

Scope

OWASP ZAP, Burp Suite, or manual
ethical hacking.Tools

Testing for SQL injection
vulnerabilities in input fields.Example

Usability TestingMethod

Assess the feature’s user experience
and ease of use.Objective

Real-world scenarios with users.Scope

Observation and user testing tools.Tools
Observing users navigating a new
dashboard for confusion or
inefficiency.

Example

Beta TestingMethod
Gather feedback from a broader user
base in a near-production
environment.

Objective

Feature released to selected users
(internal or external) under real-world
conditions.

Scope

Feature toggles and analytics tools.Tools

Releasing a new messaging feature to
5% of users.Example

Smoke TestingMethod

Quickly verify that the basic
functionality works after deployment.Objective

High-level, covering critical workflows.Scope

Manual or automated test scripts.Tools

Checking that the login page loads and
accepts credentials.Example

Exploratory TestingMethod

Discover unexpected issues by
exploring the system creatively.Objective

Entire application, focusing on areas
prone to errors.Scope

None typically (manual testing).Tools

Manually testing edge cases or unusual
workflows.Example

Deployment TestingMethod

Confirm that the deployment didn’t
introduce issues in production.Objective

Pre Production environment.Scope

TD/OMSTools

Verifying the live application and
rolling back if critical errors occur.Example

A/B TestingMethod

Compare two versions of a feature to
determine effectiveness.Objective

Limited rollout with monitoring
tools.Scope

NoneTools

Testing two UI designs to see which
performs better with users.Example

ExampleToolsScopeObjectiveMethod
Reviewing a pull request for adherence to
coding guidelines and ensuring edge cases
are addressed.

GitHub, GitLab, Bitbucket
Code-level review by peers focusing on
logic, readability, test coverage, and
adherence to coding standards.

Ensure code quality, adherence to
standards, and early detection of
potential issues.

Peer Review

Ensuring a function calculating discounts
works for all edge cases.Jest, JUnit, NUnit, etc.Smallest testable units, often automated.Verify that individual functions or

components behave as expected.Unit Testing

Testing a frontend form with a backend API
to validate end-to-end data processing.

Postman, TestContainers,
or custom integration
tests.

Multiple units combined, focusing on data
flow and API integration.

Ensure that different
components/modules interact correctly.

Integration
Testing

Simulating user workflows like login,
checkout, or user management.

Selenium, Cypress, or
manual testing.

The whole application or system in a
controlled environment.

Validate the entire system’s behavior
against requirements.

System
Testing

Running tests for all major workflows after
adding a new feature.

Automated regression
test suites.Previously developed and tested features.Confirm that new changes haven’t

broken existing functionality.
Regression
Testing

Checking response times under 1,000
concurrent users.

JMeter, Gatling, or
LoadRunner.

Application as a whole or specific
bottlenecks.

Assess speed, responsiveness, and
stability under expected and stress
conditions.

Performance
Testing

Allowing a sample group to use the new
feature and provide feedback.

None typically (manual
testing with
stakeholders).

Real-world scenarios with business
stakeholders or selected users.

Validate that the feature meets business
needs and is ready for end users.

User
Acceptance
Testing (UAT)

Testing for SQL injection vulnerabilities in
input fields.

OWASP ZAP, Burp Suite,
or manual ethical
hacking.

Vulnerabilities, penetration testing, and
compliance with security standards.

Ensure the application is resistant to
security threats.

Security
Testing

Observing users navigating a new dashboard
for confusion or inefficiency.

Observation and user
testing tools.Real-world scenarios with user personas.Assess the feature’s user experience and

ease of use.
Usability
Testing

Releasing a new messaging feature to 5% of
users.

Feature toggles and
analytics tools.

Feature released to selected users
(internal or external) under real-world
conditions.

Gather feedback from a broader user
base in a near-production environment.Beta Testing

Checking that the login page loads and
accepts credentials.

Manual or automated
test scripts.High-level, covering critical workflows.Quickly verify that the basic

functionality works after deployment.Smoke Testing

Manually testing edge cases or unusual
workflows.

None typically (manual
testing).

Entire application, focusing on areas
prone to errors.

Discover unexpected issues by exploring
the system creatively.

Exploratory
Testing

How many bugs reach production without testing?

Defect Density:

Industry averages suggest a defect
density ranging from 1 to 5 bugs per
KLOC.

KLOC = 1000 (1K) Lines Of Code.

Defect Detection Efficiency (DDE): Different
testing methods have varying effectiveness in
identifying defects. The DDE represents the
percentage of total defects detected during a
specific testing phase. While exact percentages
can vary based on numerous factors, general
industry observations provide the following
approximate DDE values:

Wikipedia

1. Peer Review: ~60%
2. Unit Testing: ~30%
3. Integration Testing: ~35%
4. System Testing: ~40%
5. User Acceptance Testing (UAT): ~15%
6. Beta Testing: ~10%

What are you testing?

The broken pipeline

The broken
PROGRAMMER

pipeline

The broken pipeline

Embrace Change. Remain In Control.

PRD

BR2TST

BR2DEV

BRANCH 2

BR1TST

BR1DEV

BRANCH 1

INT

UAT

DEV

PGM V1
PGM V2 (V1)
PGM V2 (V1)

What data are you testing with?

T=f(P,C,D)
Where:
• T: Test Result
• P: Changed Program
• C: Test Case
• D: Input Data provided during the test

• If your PROGRAM changes AND your DATA changes:
• Where is the issue?

Bottom line:

• Don’t change your test data

Unit Testing

pgm parm(&num1 &operator &num2 &result)

dcl &num1 *dec (15 5)
dcl &operator *char (1)
dcl &num2 *dec (15 5)
dcl &result *dec (15 5)

if (&operator *eq '+') then(do)
 chgvar &result (&num1 + &num2)
 return
enddo

if (&operator *eq 'x') then(do)
 chgvar &result (&num1 + &num2)
 return
enddo

endpgm

Unit Testing rules

pgm

dcl &num1 *dec (15 5)
dcl &operator *char (1)
dcl &num2 *dec (15 5)
dcl &result *dec (15 5)

chgvar &num1 (5)
chgvar &num2 (10)
call calculator parm(&num1 '+' &num2 &result)

if (&result *ne 15) then(do)
 SNDPGMMSG MSGID(CPF9898) +
 MSGF(QCPFMSG) +
 MSGTYPE(*ESCAPE) +
 MSGDTA('Calc addition: Expected 15
but got ' *cat %char(&result))
enddo

endpgm

pgm

dcl &num1 *dec (15 5)
dcl &operator *char (1)
dcl &num2 *dec (15 5)
dcl &result *dec (15 5)

chgvar &num1 (5)
chgvar &num2 (10)
call calculator parm(&num1 'x' &num2 &result)

if (&result *ne 50) then(do)
 SNDPGMMSG MSGID(CPF9898) +
 MSGF(QCPFMSG) +
 MSGTYPE(*ESCAPE) +
 MSGDTA('Calc mulitply: Expected 50
but got ' *cat %char(&result))
enddo

endpgm

Unit Testing

Where do your business rules live?

Unit Testing

• Code according to MVC principles
• Split Business Rules from UI

• Use Service Programs
• Code with modernization in mind

Peer Review

Integration Test

JEST, Junit, Etc..

Open Source Tools

Commercial Tools

